
93 

16. STACEY T.R. and JONGH C.L., Stress fracturing around a deep level bored tunnel, J. South 
Afr., Inst. Mining and Metallurg., 78, 5, 1977. 

17. NIKITIN L.V. and ODINTSEV V.N., Formation of extended, closed separation cracks in brittle 
rocks, Dokl. Akad. Nauk SSSR, 293, 4, 1987. 

Translated by M.D.F. 

J. Appt. Maths Mechs, Vol. 55, No. 1, pp. 93-99, 1991 0021-8928/91 $15.00+0.00 
Printed in Great Britain 01992 Pergamon Press plc 

DUAL FORMULATIONS OF THE BOUNDARY-ELEMENTS METHOD, 

APPLI~ATIDN TO ELASTICITY THEORY PROBLEMS FOR INHOHO~ENEOUS BODIES* 

V.YA. TERESHCHENKO 

Alternative variational formulations are considered for the 
boundary-elements method (BEM) that utilize the formulation of 
minimization problem of boundary functionals and generalized Trefftz 
functions of linear elasticity theory /l/. The variational solutions 
are approximated by using boundary potentials with the desired density: 
the formulation in displacements (line) in place of the interpolation 
considered earlier of the double layer potential (DLP) density uses 
interpolation on the boundary element (BE) of the simple layer potential 
(SLP) density according to the nodal values of the displacements; the 
dual formulation is interpolation on the BE of the PLP density according 
to the nodal values of the stresses. 

It is best to use the formulation for solving problems of 
elasticity theory with mixed boundary conditions, contact problems. In 
particular, the dual formulation turns out to be effective in solving 
problems for elastic media with discontinuous elasticity coefficients 
(piecewise-hom~eneous); adjoint conditions must be realized in the 
corresponding variational problem for both the displacement vector and 
for the stress vector on the surface of discontinuity of the 
coefficients. The results obtained in /l/ and in this paper are 
compared with the results arising from other BEM formulations. 

1. Duality of the kinematically allowable displacements and statically allowable stresses 
resulting from the Lagrange-Castigliano principle /2, 31 is known in linear elasticity theory. 
A corresponding assertion for surface displacements and stresses follows from dual variational 
principles for the boundary functionals in problems with bilateral and unilateral constraints 
on the boundary /4, 5/. The connectedness of the dual formulations of the variational problems 
(the explicit connection between the variables of the problems in terms of the governing 
relationships on the boundary) results in identical systems of boundary equations of the Ritz 
process. 

As in /l/ we will give a brief description of the direct BEM formulation on the basis 
of a problem for a boundary functional 

gD” E (cp), F(tp) =59)t(V)(~)ds-22~t(~)(~*)ds 
8 is 

(1.1) 

~(cp)=(~~Arp(z)=O, rEG, s cpdC=irotqdG=O] 
c 

Here cp is the displacement vector, 
elasticity theory, GcE, (m = 2, 3) 

A is a vector operator of isotropic homogeneous 

5' with external normal v, W (II*) 
is a bounded domain with a sufficiently smooth boundary 

is the vector of the given stresses at points of S. 

QPrikZ.Matem.Mekhun..55,1,ii8-i25,i99i 
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Realization of the solution of problem (1.1) is related /l/ to the approximation of the 
set of allowable functions D of the vector-potentials (DLP or SLP) with a dlesired density in 
the form of a complete interpolation polynomial. The polynomial coefficients are determined 
in terms of values of the displacement vector at BE nodes into which the boundary S is 
partitioned. The desired nodal values are parameters of BE-approximations "according to Ritz" 
/l/ 

rotcp,vclGa =O 

where @'n,(i) i = 1, . . . . m), everywhere later) 
placements 

are components of the desired nodal BE dis- 

As,,cSa = 5 As,, 
"=I 

diamAs,-+ O==+Gh-+G 

and fink are scalar "influence functions" of the k-th node, the n-th BE, constructed in 
the DLP /l/. The condition for the BE-approximation of the variational problem (1.1) to be 
solvable is presented in /l/. As a result of the Ritz process for solving problem (1.1) in 
the approximations (1.2), the system of BEM equations has the form /l/ 

where $k (111, rl E As, are BEM basis functions corresponding to the selected interpolation 

polynomial lb/, (J /is the determinant of the Jacobi matrix (J] transforming the surface 
element ds, (11)' in the local coordinate system into a surface element ds, (Y) in a global 
(Cartesian) coordinate system /6/. 

System (1.3) is written for a special case when the vector-operator of the boundary 
stresses W(cp) = 2padp (for example, in problems of the torsion of an elastic isotropic 
homogeneous rod /7/j and its BE approximation in the approximations (1.2) has the form /l/ 

(1.4) 

It has been shown /l/ that the BE-approximations (1.2) form a minimizing sequence for 

F(cp) and converge as N--,a~ to the generalized solution of the boundary-value problem 
with stresses t(Y) (u*) given on S, equivalent to the problem (1.1). 

A formulation utilizing the SLP with density interpolating the stress field over nodal 
values of the displacements @,k(" from (1.2) for the BE-approximations of the Solution of 
the problem (1.1) can be an alternative formulation with respect to that elucidated. It is 
natural to expect that such a formulation will result in a system of BEM equations identical 
to (1.3). 

Indeed, the displacement field at the points ?j = As, is interpolated over the nodal 

values rP$ by a linear combination /l/ 

while we take the BE-approximation of the "Ritz" solution of the problem (1.1) in the form 

Here Y”R are the "influence functions" of the k-th node, and the n-th BE are con- 
structed according to the SLP that describe the displacement field at the points z=G, 



Y, (4 = f s r(t) (3, u) ttYn) 
As,,(u) 
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(1.5) 

,^. . _ 
wnere I-“ (5, Y) 1s tireen 

A linear combination 
of statics (in the domain 

's tensor of the second problem of statics /a/. 

of the vector-potentials (1.5) is a solution of the second problem 
G, with boundary S,) 

the BE-approximation of the boundary stress vector at the points no As, here has the form 
(1.4) (with fink replaced by Y,&; then the "inflUenCe fUnCtiOnS" Vnk Will be determined 

from the formula 

and are an SLP with scalar density. The boundary values of these potentials are the following: 

%,Ynk14, =K,,z$7k (n) =>Y,~ IAs = Qk (n), vk= I...., K; q~ AS,, 
n n (1.8) 

(this last equality holds apart from a certain constant, totally without influencing the 
derivation of the system of BEN equations). 

Taking these boundary values into account, the Ritz system /I/, in which the "influence 
functions" &k are replaced by Ynk, results in a system of BM equations of an identical 
system (1.3). 

2. The dual BEM formulation for the solution of system (1.1) uses "Ritz" BE-approxi- 
mations of the form 

(2.1) 

1 cpiidGA = 1 rot (PN dGA = 0 
GA GA 

where T,k(3) are components of the desired nodal stresses, the BE As,,c SA, related to 
the components of the nodal displacements cD,,~(~) by physical relationships (for the case of 
the BE-approximation (1.4)) 

T,,k(O = c (A, p) cD,,~(*), c = 2p, Vk = 1, . . ., K (2.2) 

and ynk are scalar "influence functions" of the form (1.7) constructed according to the SLP 

s P) (XT Y) P (Y) d% (Y) 
AI,(V) 

with the vector density 

(2.3) 

A linear combination of the vector-potentials y,, is (like (1.6)) a solution of the 
second problem of statics (in the domain GA with boundary SA), Therefore, the approximations 

N 

(PN = nzl Yn @h X E GA 
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form a set {cpx}, approximating the set of allowable vector-functions D of the variational 
problem (1.1). The boundary values (1.8) of the potentials ynk are used in changing from 
the Ritz system /l/ to the system of BEM equations. For the case of the BE approximation of 
the vector t(V) (cp) of the form of (1.4), the system has the form 

(2.5) 

identical to system (1.3) when (2.2) is taken into account, which confirms the deduction (see 
above) of the identity of the Ritz process systems for realizing solutions of related dual 
variational problems for boundary functionals; in the BEM formulation under consideration, 
the affinity mentioned is reflected by the governing (physical) relationships (2.2) between 
the stress and displacement components at the nodes. 

The field of normal stresses at the points q E As,, cx Sa is determined (interpolated) 
from the nodal values Tnk@) found using (2.4); the displacement field at the points XEG~ 
is determined using (2.3). Therefore, the dual BEM formulation considered results, in the 
final analysis,in a variational solution in displacements of the original boundary-value 
problem; consequently, its foundation is analogous to the foundation for the direct formulation 
/I/. 

3. We here utilize the BEM formulation on the basis of the variational problem for the 
generalized Trefftz functional /I/. The dual BEM formulation permitting direct approximation 
of the normal stress field at the BE points has an effective application for the realization 
of the solution of the BE-approximation of the variational problem for the generalized Trefftz 
functions corresponding to the elasticity theory problem for a piecewise-homogeneous medium 
/8/. 

The solvability is established in the theory ofboundary-value problems for elliptic 
equations (and systems) with discontinuous coefficients of the differential operator /9/ for 
such problems in an equivalent variational formulation in the Sobolev class of functions 
W,l (G) (for second-order equations). A generalized Trefftz functional (in the example of 
the first problem) having the form 

W, (u) dG, + & s ([W (u)]~, - CZU)~ ds - 

8. 
(3.1) 

is constructed /lo/ for elasticity theory problems with discontinuous elasticity coefficients 
(here, unlike /lo/, the norms of the boundary values uls,, u IS,, t("*) (u) Is,) in L, are used for 
simplification). 

Minimization of the functional D(U) by the allowable displacement vector-functions u 
satisfying the equation &$(I) =K, ~CZG (AP is the vector operator of isotropic elasticity 
theory with coefficients pp = (111, pz), & = (h,, h,)) results /lo/ in a generalized solution 
no E W,ol ((G) (W," (G) is the subspace from W,‘(G) of vector-functions equal to zero on S,) 
of the following boundary-value problem: 

Q,(z) = K, .ZE C (3.2) 
[%I& = 0, It@*) (u,)ls, = 0; I ug Is, = 0 

The solution u,, is understood in the sense of satisfying the integral identity 

2 1 wp(uO, v)dG, -- s [t(V*)(u,)]s,v ds - 1 wl)(uo) v ds = i Kv dG,, 
G S. 

Vv E W,l (G; 

(3.3) 

The following notation is taken in (3.1)-(3.3): G is the domain occupied by a composite 
elastic medium, S, is the surface of discontinuity of the Lam& constants pp, h,; S, is the 
domain boundary G, 3 G,, S, n S, = @; l&, 7. u1 - IQ., ulr u2 are limit values of the vector 

u (z) as x-tyf?? S, from the domains G, and Gz; It(V.) (u)ls, = tlcv*) (uJ - tg(V.) (II*); it is 
assumed that the surfaces S, and S, are piecewise-continuous, ~W,(II) (q = 1, 2 henceforth 
everywhere) is a quadratic form of the operator A,. 

Since the vector-function no E W," (GJ fi W,'(G,) is continuous at points of the domain 
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G /9/, the adjoint condition for the displacement vector [II&, = 0 is satisfied; the adjoint 
condition for the stress vector [fW(nO)]s,= 0 is satisfied for minimization of the functional 

Q, (n) /lG/. The integral identity (3.3), obtained in /lo/ by using the Betti formula is 
essentially separated intotwoidentities that are satisfied Vv E W,l(G): 

2 swl(%~ v) dG, + s tp) (uol) v ds - s t(“l) (u,,J v ds = s Kv dG, 
G, s* 61 GI 

2 SJ+W,,? v) dG, - s tp’ (uo2) v ds = s Kv dG, 
G. s, G, 

%@) = 

~(4, LEG 

uozW LEG 

(3.4) 

(3.5) 

(3.6) 

Relationships (3.4)-(3.6) determine the set of allowable vector-functions of the problem 
of finding min@(u). The BE-approximations of the solution of this problem is taken in the 
form of the superposition of potentials /l/z a volume and linear combination of SLP (see 
(2.1)) 

(3.7F 

Here S,A is the BE-approximation of the boundaries S,, T"' n,k, 
T"' 
qn,k are components of 

the desired nodal stresses, the influence functions hk, ypnn,k are defined by (1.7) (with 2P 
replaced by appropriate constants C1 and cn); the matrices of the fundamental solutions 
rs (5, Y) and Green's tensors of the second problem of statics f'.$') (5. y) depend on un, h, 
/8/. 

The allowability of the application of (3.7) to solve the problem min@(u) is 
established in detail in /l/ taking adjoint conditions into account in the form 

ti;,', = vi;),,, Vk = 1, . . ., K, An, = i, . . ., Nz * 

where Q$,, are components of the nodal displacements corresponding to components of the 

nodal stresses T(i) 
qn,k. Therefore, the displacement vector-functions are continuous at points 

of the surface of discontinuity of the Lame constants. Satisfaction of the relationships 
(3.4) and (3.5) follows from the allowability of the approximations (3.7),(with integration 
over Gph and S,&). 

The Ritz process for solving the problem min@(u) in the BE-approximations (3.7) 
results /l/ in a Ritz system. The procedure for eliminating volume integrals from the system 
is described in detail in /l, p.622/. Here the volume integrals of the form 2s W,&N, v)dGqb 

are eliminated by using relationships obtained from the integral identities (3.4) and (3.5) 
(with integration over G,& and SqA). 

The boundary values (1.8) of the SLP (of the form (1.7)) Yn,k. Ygngk are used in transfer- 
ring to the system of BEM equations. As a result, the system of BBM equations to find the 
nodal stress components has the form 

~~rk$zI:,-l(T%- T%k) ~&,z~&,,$p] J Ids- (3.8) 

5 5 [- 0 s (tlv”‘) (6,) - t?“(6,)) c%,,$~ 1 I 1 ds + 
,,,=I &ml 
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The integrals under the summation over n, sign are evaluated according to the BE As,,(q). 
The solution of system (3.8) is realized under the condition 

and the system is uniquely solvable /l/. 

4. Let us examine certain questions of the numerical realization and practical utiliz- 
ation of the variational BEM formulas given above (see /l/ also). As an example, the Saint- 
Venant problem for a rod with elliptical transverse sections was considered, which can be 
formulated with respect to the scalar function of warping of a section as an inhomogeneous 
Neumann problem /7/ for the Laplace equation in the domain of the transverse section. This 
problem is equivalent to the problem of minimizing the boundary functional (of the form (1.1)) 
in a set of harmonic functions, or the problem of minimizing a generalized Trefftz functional 
(of the form (1.41, see /l/ also in the set mentioned. 

The BE approximation of the solution of these variational problems by using harmonic 
double-layer potentials with desired density at the BE nodes results in systems of BE-equations 
(for which the mode of writing is presented in /l/l with symmetric matrices of coefficients 
of banded structure; the band width depends on the type of boundary elements utilized. The 
coefficients of the matrix of systems (of the form (l-3), (2.51, (3.8)) for the approximation 
of boundaries of isoparametric second-order BE /l/ are calculated most simply. A comparative 
analysis of the numerical results of the realization.of the variational EEM formulations for 
such an approximation of the above-mentioned torsion problem, shows that to achieve accuracy 
of identical order for the "Trefftz" BE approximations, a number of BEs is required that is 
three times greater compared with the "Ritz" BE approximations; this confirms the known 
results /ll/ about the slower convergence of the Trefftz method as compared with the Ritz 
method. It is also confirmed that the "Ritz" BE approximations are approximations "with 
excess" while "Trefftz" approximations are "with a disadvantage" as compared with the exact 
solution of the problem, this follows from a comparison of the corresponding nodal values of 
the warping function. 

With respect to the practical application of the proposed BEW formulations, it should be 
noted that it is best to apply the formulation on the basis of minimizing the boundary 
functional in solving unilateral boundary-value problems. The "Ritz" BE approximations to 
solve the plane elasticity theory problem with unilateral constraints (of the generalized 
Signorini problem type) were used /12/ to realize the duality algorithm. It is convenient to 
apply the formulation on the basis of minimizing the generalized Trefftz functional when 
solving mixed problems and problems for piecewise-homogeneous elastic bodies since the 
singularities of these problems associated with different boundary conditions and ad3oint 
conditions for the desired function are taken into account in the corresponding generalized 
Trefftz functions /lo/. 

The advangates and disadvantages of the proposed BEM formulation were analysed in detail 
/l/ compared with existing formulations on the basis of boundary integral equations /13, 6/ 
(which are applied more often in applications); consequently, without being repetitive, let 
us just emphasize that the development of a boundary (Cm- I)-dimensional) BBM modification 
is started in /l/ and continued in this paper for the "Ritz" formulation with all the 
resultant features of the numerical realization of the algorithms inherent to the variational 
formulation of the BEM. If a comparison is made with the BBM formulation on the basis of the 
method of weighted residues (residuals) /14/, then it should be noted that the proposed 
formulations on the basis of variational problems for boundary functionals and generalized 
Trefftz functionals can be considered as a modification for realizing the method in question 
which also allows a variational formulation. A comparison of individual details indicates 
unconditionally the general features inherent in different BEM formulations: integral 
representations on the basis of potential theory and interpolation of the solution of the 
problem in the boundary element in a formulation using boundary integral equations or a 
variational approach. 

We note that the proposed variational BEM formulations for solving boundary-value problems 
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of linear elasticity theory can be treated as a semi-analytic BEN for solving elliptic 
boundary-value problems. The foundation for such terminology is the fact that the "Ritz" BE 
approximations of the solution of variational problems for boundary functionals (or 
generalized Trefftz functionals) with a constraint, (satisfaction of the differential 
equation of the boundary-value problem) equal identically the boundary potentials (or the 
superposition of volume and boundary potentials). Therefore, the constraint of the 
variational problems is satisfied exactly; the density of the boundary potentials is 
determined so that the boundary conditions of the boundary-value problem would be satisfied 
as a result of solving the variational problem for the boundary functional (or the 
generalized Trefftz functional). 
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